



#### **Instructions and Tips:**

- ✓ You have 120 minutes to complete this worksheet
- √ This worksheet consists of 15 guestions
- ✓ Write answers in the spaces provided
- ✓ All working must be clearly shown





## TUTORS

Preparation for

# High School Mathematics

**Matrices** 

**Solutions** 

| Date: / /     |  |
|---------------|--|
| Student ID:   |  |
| Student Name: |  |

**Tutor's Comments:** 

**Highest Score:** 

Access more free worksheets at www.868tutors.com

State the order of each matrix below:

(a) 
$$\begin{pmatrix} 4 & 2 & 3 \\ 3 & 6 & 6 \\ 1 & 6 & 3 \end{pmatrix}$$
 number of rows  $\times$  number of columns

$$3 \times 3$$

**(b)** 
$$\begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$$
 number of rows  $\times$  number of columns

$$3 \times 1$$



(c) 
$$(234)$$
 number of rows × number of columns  $1 \times 3$ 

(d) 
$$\begin{pmatrix} 3 \\ 2 \\ 3 \\ 6 \end{pmatrix}$$
 number of rows × number of columns  $\mathbf{4} \times \mathbf{1}$ 

(4 marks)

State the order of the following matrices:

(a) 
$$\begin{pmatrix} 2 & 5 \\ 2 & 6 \\ 3 & 9 \\ 1 & 2 \\ 3 & 2 \end{pmatrix}$$
 number of rows  $\times$  number of columns

 $5 \times 2$ 

**(b)** 
$$\begin{pmatrix} 4 & 5 \\ 4 & 5 \end{pmatrix}$$

number of rows × number of columns

 $2 \times 2$ 

(c) (2346) number of rows × number of columns

1 × 4

(d) 
$$\begin{pmatrix} 3 \\ 2 \\ 3 \\ 6 \\ 7 \end{pmatrix}$$
 number of rows × number of columns

 $5 \times 1$ 

(4 marks)

#### **Consider the following matrices:**

$$\mathbf{A} = \begin{pmatrix} 4 & 5 \\ 4 & 5 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 1 & 3 \\ 4 & 9 \end{pmatrix} \qquad \mathbf{c} = \begin{pmatrix} 6 & 2 \\ 1 & 3 \end{pmatrix}$$

$$\mathbf{c} = \begin{pmatrix} 6 & 2 \\ 1 & 3 \end{pmatrix}$$

#### **Determine the following:**

(a) 
$$A + B =$$

$$\begin{pmatrix} 4 & 5 \\ 4 & 5 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 4 & 9 \end{pmatrix} = \begin{pmatrix} 4+1 & 5+3 \\ 4+4 & 5+9 \end{pmatrix} = \begin{bmatrix} 5 & 8 \\ 8 & 14 \end{pmatrix}$$



(b) 
$$A + 2B =$$

$$\mathbf{A} = \begin{pmatrix} 4 & 5 \\ 4 & 5 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 1 & 3 \\ 4 & 9 \end{pmatrix}$$

$$\mathbf{2B} = \begin{pmatrix} 2 \times 1 & 2 \times 3 \\ 2 \times 4 & 2 \times 9 \end{pmatrix} = \begin{pmatrix} 2 & 6 \\ 8 & 18 \end{pmatrix}$$

$$\mathbf{2B} = \begin{pmatrix} 2 \times 1 & 2 \times 3 \\ 2 \times 4 & 2 \times 9 \end{pmatrix} = \begin{pmatrix} 2 & 6 \\ 8 & 18 \end{pmatrix}$$

$$\mathbf{A} + \mathbf{2B} = \begin{pmatrix} 4+2 & 5+6 \\ 4+8 & 5+18 \end{pmatrix} = \begin{pmatrix} 6 & 11 \\ 12 & 23 \end{pmatrix}$$

(c) 
$$3B + A =$$

$$\mathbf{B} = \begin{pmatrix} 1 & 3 \\ 4 & 9 \end{pmatrix}$$

**3B** = 
$$\begin{pmatrix} 3 \times 1 & 3 \times 3 \\ 3 \times 4 & 3 \times 9 \end{pmatrix}$$
 =  $\begin{pmatrix} 3 & 9 \\ 12 & 27 \end{pmatrix}$ 

$$\mathbf{A} = \begin{pmatrix} 4 & 5 \\ 4 & 5 \end{pmatrix}$$

**3B** + **A** = 
$$\begin{pmatrix} 3+4 & 9+5 \\ 12+4 & 27+5 \end{pmatrix}$$
 =  $\begin{pmatrix} 7 & 14 \\ 16 & 32 \end{pmatrix}$ 

#### (d) 2A + 2B =

$$\mathbf{A} = \begin{pmatrix} 4 & 5 \\ 4 & 5 \end{pmatrix} \quad \mathbf{2A} = \begin{pmatrix} 2 \times 4 & 2 \times 5 \\ 2 \times 4 & 2 \times 5 \end{pmatrix} = \begin{pmatrix} 8 & 10 \\ 8 & 10 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 1 & 3 \\ 4 & 9 \end{pmatrix} \quad \mathbf{2B} = \begin{pmatrix} 2 \times 1 & 2 \times 3 \\ 2 \times 4 & 2 \times 9 \end{pmatrix} = \begin{pmatrix} 2 & 6 \\ 8 & 18 \end{pmatrix}$$

**2A + 2B** = 
$$\begin{pmatrix} 8+2 & 10+6 \\ 8+8 & 10+18 \end{pmatrix}$$
 =  $\begin{pmatrix} 10 & 16 \\ 16 & 28 \end{pmatrix}$ 

**2B** = 
$$\begin{pmatrix} 2 & 6 \\ 8 & 18 \end{pmatrix}$$
 **A** =  $\begin{pmatrix} 4 & 5 \\ 4 & 5 \end{pmatrix}$  **C** =  $\begin{pmatrix} 6 & 2 \\ 1 & 3 \end{pmatrix}$ 

**2B + A - C** = 
$$\begin{pmatrix} 2 & 6 \\ 8 & 18 \end{pmatrix}$$
 +  $\begin{pmatrix} 4 & 5 \\ 4 & 5 \end{pmatrix}$  -  $\begin{pmatrix} 6 & 2 \\ 1 & 3 \end{pmatrix}$ 

**2B + A - C =** 
$$\begin{pmatrix} 2+4-6 & 6+5-2 \\ 8+4-1 & 18+5-3 \end{pmatrix}$$

$$2B + A - C = \begin{pmatrix} 0 & 9 \\ 11 & 20 \end{pmatrix}$$

(10 marks)

Determine the values of P, Q, R and S.

(a) 
$$\begin{pmatrix} 5 & P \\ 20 & 5 \end{pmatrix} + \begin{pmatrix} 3-5 \\ R & 6 \end{pmatrix} = \begin{pmatrix} Q & 10 \\ 18 & S \end{pmatrix}$$

$$P + -5 = 10$$

$$20 + R = 18$$

$$P = 10 + 5 = 15$$

$$R = 18 - 20$$

$$P = 15$$

$$R = -2$$

$$5 + 3 = Q$$

$$5 + 6 = S$$

$$Q = 8$$

Determine the values of A, B, C and D.

**(b)** 
$$\begin{pmatrix} 3 & A \\ 4 & 9 \end{pmatrix} + \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} B & 3 \\ C & D \end{pmatrix}$$

$$3+2=B$$

$$4+3=C$$

$$B = 5$$

$$A + 1 = 3$$

$$9 + 5 = D$$

$$A = 3 - 1$$

$$A = 2$$

(4 marks)

#### **Consider the following matrices:**

$$\mathbf{P} = \begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix} \qquad \mathbf{Q} = \begin{pmatrix} 9 & 10 \\ 8 & 7 \end{pmatrix} \qquad \mathbf{R} = \begin{pmatrix} 11 & 12 \\ 1 & 2 \end{pmatrix}$$

(a) 
$$Q + R = \begin{pmatrix} 9 & 10 \\ 8 & 7 \end{pmatrix} + \begin{pmatrix} 11 & 12 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 9+11 & 10+12 \\ 8+1 & 7+2 \end{pmatrix}$$

$$\mathbf{Q} + \mathbf{R} = \begin{pmatrix} 20 & 22 \\ 9 & 9 \end{pmatrix}$$



(b) 
$$P + 2Q + R =$$

$$P = \begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix} \quad 2Q = \begin{pmatrix} 18 & 20 \\ 16 & 14 \end{pmatrix} \qquad R = \begin{pmatrix} 11 & 12 \\ 1 & 2 \end{pmatrix}$$

$$P + 2Q + R = \begin{pmatrix} 1 + 18 + 11 & 2 + 20 + 12 \\ 2 + 16 + 1 & 6 + 14 + 2 \end{pmatrix} = \begin{pmatrix} 30 & 34 \\ 19 & 22 \end{pmatrix}$$

$$P + 2Q + R = \begin{pmatrix} 30 & 34 \\ 19 & 22 \end{pmatrix}$$

(c) 
$$R - P =$$

$$\mathbf{R} = \begin{pmatrix} 11 & 12 \\ 1 & 2 \end{pmatrix} \quad \mathbf{P} = \begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix}$$

$$\mathbf{R} - \mathbf{P} = \begin{pmatrix} 11 - 1 & 12 - 2 \\ 1 - 2 & 2 - 6 \end{pmatrix}$$

$$\mathbf{R} - \mathbf{P} = \begin{pmatrix} 10 & 10 \\ -1 & -4 \end{pmatrix}$$

#### (d) 2Q - R =

**2Q** = 
$$\begin{pmatrix} 2 \times 9 & 2 \times 10 \\ 2 \times 8 & 2 \times 7 \end{pmatrix}$$
 =  $\begin{pmatrix} 18 & 20 \\ 16 & 14 \end{pmatrix}$ 

$$2Q = \begin{pmatrix} 18 & 20 \\ 16 & 14 \end{pmatrix}$$

$$2Q = \begin{pmatrix} 18 & 20 \\ 16 & 14 \end{pmatrix} R = \begin{pmatrix} 11 & 12 \\ 1 & 2 \end{pmatrix}$$

$$2Q - R = \begin{pmatrix} 18 - 11 & 20 - 12 \\ 16 - 1 & 14 - 2 \end{pmatrix}$$

$$2Q - R = \begin{pmatrix} 7 & 8 \\ 15 & 12 \end{pmatrix}$$



#### (e) P + Q + R =

$$\mathbf{P} = \begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix} \qquad Q = \begin{pmatrix} 9 & 10 \\ 8 & 7 \end{pmatrix} \qquad R = \begin{pmatrix} 11 & 12 \\ 1 & 2 \end{pmatrix}$$

**P** + **Q** + **R** = 
$$\begin{pmatrix} 1+9+11 & 2+10+12 \\ 2+8+1 & 6+7+2 \end{pmatrix}$$

$$\mathbf{P} + \mathbf{Q} + \mathbf{R} = \begin{pmatrix} 21 & 24 \\ 11 & 15 \end{pmatrix}$$

(10 marks)

#### **Consider the following matrices:**

**A** = 
$$\begin{pmatrix} 1 & 5 \\ 2 & 6 \end{pmatrix}$$
 **B** =  $\begin{pmatrix} 9 & 1 \\ 8 & 1 \end{pmatrix}$  **C** =  $\begin{pmatrix} 11 & 12 \\ 1 & 1 \end{pmatrix}$ 

#### (a) Find |A|, |B|, |C|

$$\mathbf{A} = \begin{pmatrix} 1 & 5 \\ 2 & 6 \end{pmatrix} \quad let \ \mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad |\mathbf{A}| = (a) \ (d) - (b) \ (c)$$

$$|A| = (1)(6) - (5)(2)$$
  $|A| = 6-10$ 

$$|A| = -4$$

$$\mathbf{B} = \begin{pmatrix} 9 & 1 \\ 8 & 1 \end{pmatrix} \qquad let \ \mathbf{B} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad |\mathbf{B}| = \langle a \rangle \langle d \rangle - \langle b \rangle \langle c \rangle$$

$$|\mathbf{B}| = (9)(1) - (1)(8)$$

$$|B| = 1$$

$$C = \begin{pmatrix} 11 & 12 \\ 1 & 1 \end{pmatrix}$$
 let  $\mathbf{C} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 

$$|C| = (11)(1) - (12)(1)$$

$$|C| = 11-12$$

(6 marks)

#### (b) Find $A^{-1}$

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{(a)(d) - (b)(c)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
$$\mathbf{A}^{-1} = -\frac{1}{4} \begin{pmatrix} 6 & -5 \\ -2 & 1 \end{pmatrix} \qquad \mathbf{A}^{-1} = \begin{pmatrix} -1.5 & 1.25 \\ 0.5 & -0.25 \end{pmatrix}$$

$$\mathbf{A}^{-1} = -\frac{1}{4} \begin{pmatrix} 6 & -5 \\ -2 & 1 \end{pmatrix}$$
  $\mathbf{A}^{-1} = \begin{pmatrix} -1.5 & 1.25 \\ 0.5 & -0.25 \end{pmatrix}$ 

(3 marks)

(c) Find 
$$B^{-1}$$

$$B = \begin{pmatrix} 9 & 1 \\ 8 & 1 \end{pmatrix} \quad let B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$B^{-1} = \frac{1}{|B|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{(a)(d) - (b)(c)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$B^{-1} = -\frac{1}{1} \begin{pmatrix} 1 & -1 \\ -8 & 9 \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} 1 & -1 \\ -8 & 9 \end{pmatrix}$$



(3 marks)

#### (d) Find $C^{-1}$

$$\mathbf{C} = \begin{pmatrix} 11 & 12 \\ 1 & 1 \end{pmatrix} \quad let \ C = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\mathbf{C}^{-1} = \frac{1}{|\mathbf{C}|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{-1} \begin{pmatrix} 1 & -12 \\ -1 & 11 \end{pmatrix}$$

$$\mathbf{C}^{-1} = \begin{pmatrix} -1 & 12 \\ 1 & -11 \end{pmatrix}$$

(3 marks)

Multiply the following matrices. If the matrices cannot be multiplied state a reason why.

(a) 
$$\binom{1}{2} \binom{8}{6} \times \binom{3}{4} \binom{3}{4} \binom{3}{4} = \binom{1 \times 3 + 8 \times 4}{2 \times 3 + 6 \times 4} \binom{1 \times 3 + 8 \times 4}{2 \times 3 + 6 \times 4} \binom{1 \times 3 + 8 \times 4}{2 \times 3 + 6 \times 4} \binom{1 \times 3 + 8 \times 4}{2 \times 3 + 6 \times 4} \binom{1 \times 3 + 8 \times 4}{2 \times 3 + 6 \times 4} = \binom{35}{30} \binom{35}{30} \binom{35}{30} \binom{35}{30}$$

(2 marks)

**(b)** 
$$\binom{9}{8} \ \binom{10}{9} \times \binom{11}{1} \ \binom{12}{1} = \binom{9 \times 11 + 10 \times 1}{8 \times 11 + 9 \times 1} = \binom{9 \times 12 + 10 \times 1}{8 \times 12 + 9 \times 1}$$

$$2 \times 2 \quad 2 \times 2 \quad = \binom{99 + 10}{88 + 9} \ \binom{108 + 10}{96 + 9} = \binom{109}{97} \ \binom{118}{97}$$

(2 marks)

c) 
$$\binom{3}{4} \cdot \binom{3}{4} \cdot \binom{3}{4} \times \binom{1}{2} \cdot \binom{8}{6} = 2 \times 3$$

These matrices cannot be multiplied since the number of columns in the first matrix is not equal to number of rows in the second matrix.

$$P = \begin{pmatrix} 1 & 3 \\ 1 & 6 \end{pmatrix}$$
  $Q = \begin{pmatrix} 9 & 16 \\ 1 & 2 \end{pmatrix}$   $R = \begin{pmatrix} 11 & 11 \\ 0 & 1 \end{pmatrix}$ 

#### (a) Find PQ

**PQ** = 
$$\begin{pmatrix} 1 & 3 \\ 1 & 6 \end{pmatrix}$$
 ×  $\begin{pmatrix} 9 & 16 \\ 1 & 2 \end{pmatrix}$  =  $\begin{pmatrix} 1 \times 9 + 3 \times 1 & 1 \times 16 + 3 \times 2 \\ 1 \times 9 + 6 \times 1 & 1 \times 16 + 6 \times 2 \end{pmatrix}$ 

**PQ** = 
$$\begin{pmatrix} 9+3 & 16+6 \\ 9+6 & 16+12 \end{pmatrix}$$
 **PQ** =  $\begin{pmatrix} 12 & 22 \\ 15 & 28 \end{pmatrix}$ 



(2 marks)

#### (b) Find QR

$$\mathbf{QR} = \begin{pmatrix} 9 & 16 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} 11 & 11 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 9 \times 11 + 16 \times 0 & 9 \times 11 + 16 \times 1 \\ 1 \times 11 + 2 \times 0 & 1 \times 11 + 2 \times 1 \end{pmatrix}$$

$$\mathbf{QR} = \begin{pmatrix} 99 + 0 & 99 + 16 \\ 11 + 0 & 11 + 2 \end{pmatrix} \quad \mathbf{QR} = \begin{pmatrix} 99 & 115 \\ 11 & 13 \end{pmatrix}$$

#### (c) Find RQ

$$\mathbf{RQ} = \begin{pmatrix} 11 & 11 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 9 & 16 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 11 \times 9 + 11 \times 1 & 11 \times 16 + 11 \times 2 \\ 0 \times 9 + 1 \times 1 & 0 \times 16 + 1 \times 2 \end{pmatrix}$$

$$\mathbf{RQ} = \begin{pmatrix} 99 + 11 & 176 + 22 \\ 0 + 1 & 0 + 2 \end{pmatrix}$$

$$\mathbf{RQ} = \begin{pmatrix} 110 & 198 \\ 1 & 2 \end{pmatrix}$$

(2 marks)

#### (d) Find PQR

$$PQR = PQ \times R$$

Recall from (a) 
$$PQ = \begin{pmatrix} 12 & 22 \\ 15 & 28 \end{pmatrix}$$

$$PQR = \begin{pmatrix} 12 & 22 \\ 15 & 28 \end{pmatrix} \times \begin{pmatrix} 11 & 11 \\ 0 & 1 \end{pmatrix}$$



**PQR** = 
$$\begin{pmatrix} 12 \times 11 + 22 \times 0 & 12 \times 11 + 22 \times 1 \\ 15 \times 11 + 28 \times 0 & 15 \times 11 + 28 \times 1 \end{pmatrix}$$

$$PQR = \begin{pmatrix} 132 + 0 & 132 + 22 \\ 165 + 0 & 165 + 28 \end{pmatrix}$$

$$PQR = \begin{pmatrix} 132 & 154 \\ 165 & 193 \end{pmatrix}$$

(a) Express the equations

$$2x - 6y = 0$$

$$3x + 2y = 44$$

in the form AX = B, where A, X and B are matrices.

$$\begin{pmatrix} 2 & -6 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 44 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -6 \\ 3 & 2 \end{pmatrix} X = \begin{pmatrix} x \\ y \end{pmatrix} B = \begin{pmatrix} 0 \\ 44 \end{pmatrix}$$



(2 marks)

(b) Express the equations

$$4x - 3y = 5$$

$$5x - 2y = 8$$

in the form AX = B, where A,X and B are matrices.

$$\begin{pmatrix} 4 & -3 \\ 5 & -2 \end{pmatrix} \quad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & -3 \\ 5 & -2 \end{pmatrix}$$
  $X = \begin{pmatrix} x \\ y \end{pmatrix}$   $B = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$ 

#### Solve the simultaneous equations using matrices:

x + y = 14

2x + 3y = 33

$$\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 14 \\ 33 \end{pmatrix}$$

A X B

 $X = A^{-1} B$ 

$$\binom{x}{y} = \frac{1}{|A|} \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 14 \\ 33 \end{pmatrix}$$

 $let \mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 

$$|A| = (a) (d) - (b) (c)$$
  $|A| = (1) (3)-(1) (2)$   $|A| = 3-2$   $|A| = 1$ 

 $\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{1} \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 14 \\ 33 \end{pmatrix} \qquad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 14 \\ 33 \end{pmatrix}$ 

$$\binom{x}{y} = \binom{3}{2} \quad \frac{-1}{1} \quad \binom{14}{33}$$

2×2 2×1

$$\binom{x}{y} = \binom{3}{-2} \quad \frac{-1}{1} \quad \binom{14}{33}$$

$$\binom{x}{y} = \begin{pmatrix} 3 \times 14 & + & -1 \times 33 \\ -2 \times 14 & + & 1 \times 33 \end{pmatrix}$$

$$\binom{x}{y} = \binom{42 - 33}{-28 + 33}$$

$$\binom{x}{y} = \binom{9}{5}$$

$$x = 9$$

$$y = 5$$

(6 marks)

Solve the simultaneous equations using matrices.

$$a + b = 10$$

$$3a + 2b = 28$$

$$\begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 10 \\ 28 \end{pmatrix}$$

A X E

 $X = A^{-1} B$ 

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{|A|} \begin{pmatrix} 2 & -1 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 10 \\ 28 \end{pmatrix} \quad let \mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$|A| = (a)(d) - (b)(c)$$
  $|A| = (1)(2) - (1)(3)$   $|A| = 2-3$   $|A| = -1$ 

$$\binom{a}{b} = \frac{1}{-1} \begin{pmatrix} 2 & -1 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 10 \\ 28 \end{pmatrix} \qquad \binom{a}{b} = \begin{pmatrix} -2 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 10 \\ 28 \end{pmatrix}$$

$$2 \times 2 \qquad 2 \times 1$$

868TUTORS

$$\binom{a}{b} = \begin{pmatrix} -2 & 1\\ 3 & -1 \end{pmatrix} \begin{pmatrix} 10\\ 28 \end{pmatrix}$$

$$\binom{a}{b} = \begin{pmatrix} -2 \times 10 & + & 1 \times 28 \\ 3 \times 10 & + & -1 \times 28 \end{pmatrix}$$

$$\binom{a}{b} = \binom{-20 + 28}{30 - 28}$$

$$\binom{a}{b} = \binom{8}{2}$$

$$b = 2$$

(6 marks)

Solve the simultaneous equations using matrices.

$$p - q = 10$$

$$2p + q = 26$$

$$\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 10 \\ 26 \end{pmatrix}$$

A X I

 $X = A^{-1} B$ 

$$\binom{p}{q} = \frac{1}{|A|} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 10 \\ 26 \end{pmatrix} \quad let \mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$|A| = (a)(d) - (b)(c)$$
  $|A| = (1)(1) - (-1)(2)$   $|A| = 1 + 2$   $|A| = 3$ 

$$\binom{p}{q} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 10 \\ 26 \end{pmatrix} \qquad \binom{a}{b} = \begin{pmatrix} \frac{1}{3} \\ \frac{-2}{3} \\ \frac{1}{3} \end{pmatrix} \begin{pmatrix} 10 \\ 28 \end{pmatrix}$$

$$\binom{p}{q} = \binom{\frac{1}{3} \times 10 + \frac{1}{3} \times 26}{\frac{-2}{3} \times 10 + \frac{1}{3} \times 26}$$

$$\binom{p}{q} = \begin{pmatrix} \frac{10}{3} + & \frac{26}{3} \\ \frac{-20}{3} + & \frac{26}{3} \end{pmatrix}$$

$$\binom{p}{q} = \binom{\frac{36}{3}}{\frac{6}{3}}$$

$$\binom{p}{q} = \binom{12}{2}$$

$$q = 2$$

(6 marks)

#### (a) The Matrix A is defined as:

$$\mathbf{A} = \begin{pmatrix} 5 & 2 \\ b & 4 \end{pmatrix}$$

## Determine the value of $\emph{b}$ for which the matrix A does not have an inverse.

Let 
$$A = \begin{pmatrix} w & x \\ y & z \end{pmatrix}$$
  $|A| = (w)(z) - (x)(y)$ 

The matrix A does not have an inverse when |A| = 0

$$0 = (5)(4) - (2)(b)$$

$$20 - 2b = 0$$

$$-2b = -20$$

$$b = \frac{20}{2}$$
 **b= 10** (The matrix A does not have an inverse when b=10)

(2 marks)

#### (b) The Matrix C is defined as:

$$\mathbf{c} = \begin{pmatrix} 6 & d \\ 2 & 4 \end{pmatrix}$$

## Determine the value of $\emph{d}$ for which the matrix C does not have an inverse.

Let 
$$C = \begin{pmatrix} w & x \\ y & z \end{pmatrix}$$
  $|A| = (w)(z) - (x)(y)$ 

The matrix C does not have an inverse when |C| = 0

$$0 = (6)(4) - (d)(2)$$

$$24 - 2d = 0$$

$$-2d = -24$$

$$d = \frac{-24}{-2}$$
 **d = 12** (The matrix C does not have an inverse when d = 12)

#### (a) The Matrix Y is defined as:

$$\mathbf{Y} = \begin{pmatrix} -5 & 2 \\ p & 4 \end{pmatrix}$$

## Determine the value of p for which the matrix Y does not have an inverse.

Let 
$$Y = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
  $|Y| = (a)(d) - (b)(c)$ 

The matrix A does not have an inverse when |Y| = 0

$$0 = (-5)(4) - (2)(p)$$

$$-20 - 2p = 0$$

$$-2p = -20$$

$$p = \frac{20}{2}$$
 |  $\mathbf{p} = -10$  (The matrix A does not have an inverse when  $p = -10$ )

(2 marks)

#### (b) The Matrix Z is defined as:

$$\mathbf{Z} = \begin{pmatrix} 10 & h \\ 9 & 18 \end{pmatrix}$$

## Determine the value of h for which the matrix Z does not have an inverse.

Let 
$$Z = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
  $|\mathbf{Z}| = (a)(d) - (b)(c)$ 

The matrix A does not have an inverse when |Z| = 0

$$0 = (10)(18) - (h)(9)$$

$$180 - 9h = 0$$

$$-9h = -180$$

$$h = \frac{-180}{-9}$$
 **h = 20** (The matrix A does not have an inverse when  $h = 20$ )

(a) State the 2  $\times$  2 transformation matrix which represents a reflection in the line y = x.

 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 

(b) State the 2  $\times$  2 transformation matrix which represents a reflection in the line y = -x.

 $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ 

(c) State the 2 × 2 transformation matrix which represents a reflection in the x axis.

 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 

- 868Tutors
- (d) State the 2 × 2 transformation matrix which represents a reflection in the y axis.

 $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ 

(e) State the 2  $\times$  2 transformation matrix which represents a 90° clockwise rotation about the origin.

 $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ 

(10 marks)

Purchase solutions at www.868tutors.com



#### **END OF WORKSHEET**



Access more free worksheets at www.868tutors.com