

Instructions and Tips:

- √ You have 60 minutes to complete this worksheet
- √ This worksheet consists of 5 guestions
- ✓ Write answers in the spaces provided
- ✓ All working must be clearly shown
- ✓ Give answers to 2 decimal places

TUTORS

Preparation for

High School Mathematics

Measurement

(Speed, Distance, Time)

Solutions

Highest Score	
Total Score:	
Date://	
Student ID:	
Student Name:	

Tutor's Comments:

Access more free worksheets at www.868tutors.com

A sprinter from St. Kitts and Nevis enters a regional 100 m race. The sprinter covers a distance of 100 m in 9.87 seconds.

(a) Calculate his average speed for the race.

Average speed =
$$\frac{Total\ Distance}{Total\ Time}$$
 = $\frac{100\ m}{9.87\ seconds}$
Average speed = $\frac{10.13\ m/s}{100\ m}$

(2 marks)

(b) What should his average speed be to complete the 100 m in 9.59 seconds?

Average speed required =
$$\frac{100 \text{ m}}{9.59 \text{ s}}$$
 = 10.43 m/s (to 2 decimal places)

(2 marks)

(c) The sprinter's average speed for a 200 m race is 10.21 m/s. Calculate the time he takes to cover 200 m.

Average speed =
$$\frac{Total\ Distance}{Total\ Time}$$
 Time × Average Speed = Total Distance

Time =
$$\frac{Total\ Distance}{\text{Average Speed}}$$
 Time = $\frac{200\ m}{10.21\ m/s}$ Time = 19.59 seconds (to 2 decimal places)

A pickup truck travels at 65 kilometres per hour on a highway in Trinidad.

(a) Calculate the time taken, in minutes, to cover 30 km at this constant speed.

Average speed =
$$\frac{Total\ Distance}{Total\ Time}$$

Average speed =
$$\frac{Total\ Distance}{Total\ Time}$$
 Time = $\frac{Total\ Distance}{Average\ Speed} = \frac{30\ km}{65\ km/h}$

Time = 0.461538462 hour

1 hour = 60 minutes
$$0.461538462 \text{ hour} = 60 \text{ minutes} \times 0.461538462 = 27.69 \text{ minutes (to 2 dp)}$$

(1 mark)

(b) Calculate the time taken, in minutes, to cover 30 km at a constant speed of 80 km/h.

Average speed =
$$\frac{Total\ Distance}{Total\ Time}$$

Time =
$$\frac{Total\ Distance}{\text{Average Speed}} = \frac{30\ km}{80\ km/h}$$

Time = 0.375 hour

1 hour = 60 minutes
$$0.375$$
 hour = 60 minutes $\times 0.375$ = 22.5 minutes (to 2 dp)

(2 marks)

(c) How much time is saved by travelling at 80 km/h instead of 65 km/h over a distance of 30 km?

Time saved = Time taken at 65km/h - Time taken at 80 km/h

Time saved = 27.69 minutes – 22.5 minutes

Time saved =
$$5.19 \text{ minutes (to 2 dp)}$$

The chart below shows the 2 kilometre sprint times of some speed boats in a race off the coast of Trinidad.

Name of Speedboat	Time
Icacos Fire	51 seconds
Erin Dragon	50 seconds
St. Patrick Speedster	49 seconds
Mr. La Brea	45 seconds

(a) Calculate the average speed (in km/h) of Mr. La Brea during the sprint.

Average speed =
$$\frac{Total\ Distance}{Total\ Time}$$
 = $\frac{2\ km}{Total\ Time}$ Total Time (Mr. La Brea) = 45 seconds
3600 seconds = 1 hour 1 second = $\frac{1\ hour}{3600}$ 45 seconds = $\frac{1\ hour}{3600}$ × 45 45 seconds = 0.0125 hour
Average speed = $\frac{Total\ Distance}{Total\ Time}$ = $\frac{2\ km}{0.0125\ hour}$ = 160 km/h

(b) Calculate the average speed (in km/h) of Icacos Fire during the sprint. 868 [UTORS]

Average speed =
$$\frac{Total\ Distance}{Total\ Time}$$
 = $\frac{2\ km}{Total\ Time}$ Total Time (Icacos Fire) = 51 seconds

3600 seconds = 1 hour 1 second = $\frac{1\ hour}{3600}$ 51 seconds = $\frac{1\ hour}{3600} \times 51$ 51 seconds = 0.014166666 hr

Average speed = $\frac{Total\ Distance}{Total\ Time}$ = $\frac{2\ km}{0.014166667\ hr}$ = 141.18 km/h (to 2 dp) (2 marks)

(c) The crew of Mr. La Brea want to achieve a time of 43 seconds in the next race. What should their average speed in km/h be?

Average speed =
$$\frac{Total\ Distance}{Total\ Time}$$
 = $\frac{2\ km}{Total\ Time}$ Required Time (Mr. La Brea) = 43 seconds 3600 seconds = 1 hour 1 second = $\frac{1\ hour}{3600}$ 43 seconds = $\frac{1\ hour}{3600}$ × 43 43 seconds = 0.011944444 hour Average speed = $\frac{Total\ Distance}{Total\ Time}$ = $\frac{2\ km}{0.011944444\ hour}$ = 167.44 km/h (to 2 dp)

(3 marks)

The table below indicates the times recorded by five horses at a horse racing event, on the beach, in Cedros, Trinidad. The race distance is 1.5 km.

Name of Horse	Time
Palo Seco Spirit	72 seconds
Apache	73 seconds
Survivor	74 seconds
Coromandel Commander	68 seconds

(a) Calculate the average speed (in m/s) of each horse.

Average speed =
$$\frac{Total \, Distance}{Total \, Time}$$
 1 km = 1000 m 1.5 km = 1000 m ×1.5 1.5 km = 1500 m
Average Speed (Palo Seco Spirit) = $\frac{1500 \, m}{72 \, \text{seconds}}$ = $\frac{20.83 \, \text{m/s}}{72 \, \text{seconds}}$ = $\frac{1500 \, m}{73 \, \text{seconds}}$ = $\frac{20.55 \, \text{m/s}}{73 \, \text{seconds}}$ = $\frac{1500 \, m}{74 \, \text{seconds}}$ = $\frac{1500 \, m}{74 \, \text{seconds}}$ = $\frac{1500 \, m}{68 \, \text{seconds}}$

(2 marks)

(b) Complete the table below to show the position of each horse in the race.

Place	Name of Horse
1st	Coromandel Commander
2nd	Palo Seco Spirit
3rd	Apache
4th	Survivor

A ferry leaves Port of Spain with passengers headed for a family day at Columbus Bay. The distance to be covered is 80 km.

(a) Calculate the average speed (in km/h) the ferry has to travel to arrive in 1 hour and 15 minutes.

Average speed =
$$\frac{Total\ Distance}{Total\ Time}$$
 1 hour and 15 minutes = 1.25 hours

Average speed =
$$\frac{80 \text{ km}}{1.25}$$
 = **64 km/h**

(2 marks)

(b) The ferry leaves Port of Spain at 6am but arrives at its destination at 7:30 am. Calculate the average speed of the ferry in this case.

Average speed =
$$\frac{Total\ Distance}{Total\ Time}$$
 Time taken = 1 hour and 30 minutes = 1.5 hours

Average speed =
$$\frac{80 \text{ km}}{1.5 \text{ hour}}$$
 = 53.33 km/h (to 2 dp)

Purchase solutions at www.868tutors.com

END OF WORKSHEET

Access more free worksheets at www.868tutors.com