

TUTORS

Preparation for

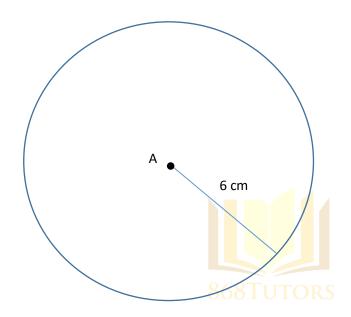
High School Mathematics

Measurement III **Solutions**

Instructions and Tips:

- √ You have 75 minutes to complete this worksheet
- √ This worksheet consists of 12 guestions
- ✓ Write answers in the spaces provided
- ✓ All working must be clearly shown
- Diagrams are not drawn to scale

Student ID: Date://	
Total Score:	


Access more free worksheets at www.868tutors.com

Tutor's Comments:

Consider the circle below with centre A and a radius of 6 cm:

Use $\pi = 3.14$

(Diagram not drawn to scale)

(a) Calculate the area of the circle.

$$A = \pi r^2$$

 $A = 3.14 \times (6 \text{ cm})^2$
 $A = 3.14 \times 36 \text{ cm}^2$
Area of the circle = 113.04 cm²

(2 marks)

(b) Calculate the circumference of the circle.

 $C = 2 \pi r$

 $C = 2 \times 3.14 \times 6 \text{ cm}$

Circumference of the circle = **37.68 cm**

Use $\pi = 3.14$

(a) Calculate the area of a circle of diameter 5 m.

$$A = \pi r^2$$
 diameter = 5m radius = 2.5 m

$$A = 3.14 \times (2.5)^{2}$$

$$A = 3.14 \times 6.25$$

Area of the circle =
$$19.625 \text{ m}^2$$

(2 marks)

(b) Calculate the circumference of a circle of diameter 6 m.

$$C = 2 \pi r$$
 diameter = 6 m radius = 3 m

$$C = 2 \times 3.14 \times 3 \text{ m}$$

Circumference of the circle = 18.84 m

(2 marks)

(c) A circle has an area of 49 m². Calculate the diameter of the circle.

 $A = \pi r^2$ making r the subject of the formula

$$r^2 = \frac{A}{\pi}$$

$$r = \left(\frac{A}{\pi}\right)^{0.5}$$

$$r = \left(\frac{49}{3.14}\right)^{0.5} \qquad r = 3.950328536 \, m$$

$$d = 2r$$

diameter = 7.90 m (to 2 decimal places)

Consider the rectangle below:

(Diagram not drawn to scale)

5 cm

9 cm

(a) Calculate the perimeter of the rectangle.

Perimeter = $2 \times l + 2 \times w$

Perimeter = $2 \times 9 \text{ cm} + 2 \times 5 \text{ cm}$

Perimeter = 18 cm + 10 cm

Perimeter = 28 cm

(1 mark)

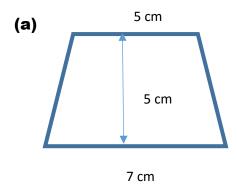
(b) Calculate the area of the rectangle.

Area = $length \times width$

Area = $9 \text{ cm} \times 5 \text{ cm}$

Area = 45 cm^2

(1 mark)

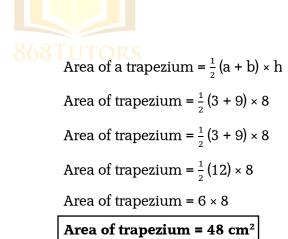

(c) A square has an area of 144m². Determine the length of the side of the square.

$$A = s^2$$
 $s = (A)^{0.5}$ $s = (144)^{0.5}$ $s = 12 \text{ m}$

(1 mark)

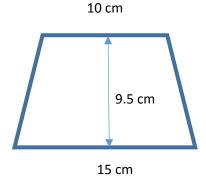
Calculate the area of each trapezium shown:

(Diagrams not drawn to scale)


Area of a trapezium =
$$\frac{1}{2}$$
 (a + b) × h

Area of trapezium = $\frac{1}{2}$ (5cm + 7cm) × 5cm

Area of trapezium = $\frac{1}{2}$ (12cm) × 5cm


Area of trapezium = 30 cm²

(b) 3 cm 8 cm

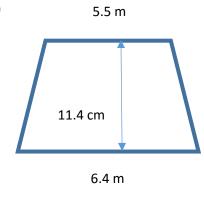
(2 marks)

(c)

Area of a trapezium = $\frac{1}{2}$ (a + b) × h

Area of trapezium = $\frac{1}{2}$ (10cm + 15cm) × 9.5 cm

Area of trapezium = $\frac{1}{2}$ (25cm) × 9.5 cm


Area of trapezium = $12.5 \text{cm} \times 9.5 \text{ cm}$

Area of trapezium = $12.5 \text{cm} \times 9.5 \text{ cm}$

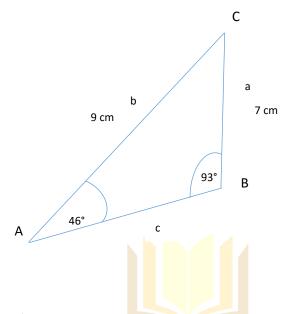
Area of trapezium = 118.75 cm²

(2 marks)

(d)

Area of a trapezium = $\frac{1}{2}$ (a + b) × h

Area of trapezium = $\frac{1}{2}$ (5.5 + 6.4) × 11.4


Area of trapezium = $\frac{1}{2}$ (11.9) × 11.4

Area of trapezium = 5.95×11.4

Area of trapezium = 67.83 m^2

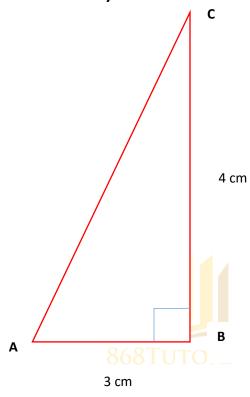
Calculate the area of the triangle with the given dimensions.

(Diagram not drawn to scale)

Area of a triangle = $\frac{1}{2}$ ab sin C

 $C = 180^{\circ} - (46^{\circ} + 93^{\circ})$ (Internal angles in a triangle sum to 180°)

 $C = 41^{\circ}$

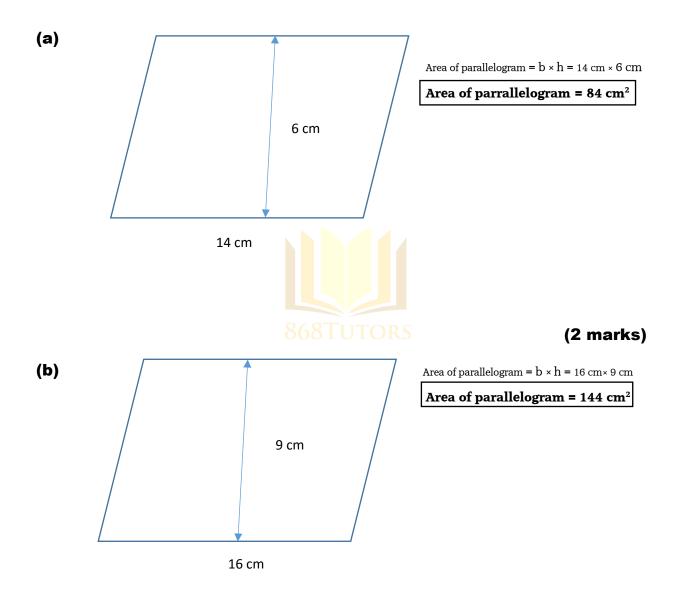

Area of triangle = $\frac{1}{2}$ (7cm) × (9 cm) sin (41°)

Area of triangle = $\frac{63}{2} \sin (41^{\circ}) = 31.5 \sin (41^{\circ})$

Area of triangle = 20.67 cm² (to 2 decimal places)

Calculate the area of the triangle with the given dimensions.

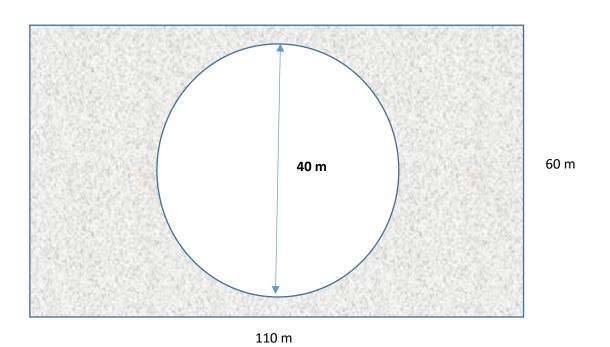
(Diagram not drawn to scale)



Area of a triangle = $\frac{1}{2}$ (b × h)

Area of triangle = $\frac{1}{2}$ (3cm × 4cm)

Area of triangle = 6 cm²


Calculate the area of the parallelograms with the given dimensions: (Diagrams not drawn to scale)

Consider a circle inside of a rectangle. The circle has a diameter of 40 m.

Use $\pi = 3.14$

(Diagram not drawn to scale)

Calculate the area of the shaded region.

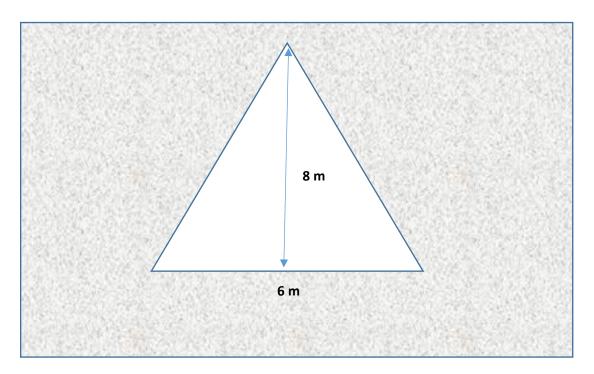
Area of the shaded region = Area of the rectangle - Area of the circle

Area of the rectangle = $b \times h = 110 \text{ m} \times 60 \text{ m} = 6600 \text{ m}^2$

Area of the circle = πr^2 radius = 20 m

Area of the circle = $3.14 \times (20)^2 = 3.14 \times 400 = 1256 \text{ m}^2$

Area of the shaded region = $6600 \text{ m}^2 - 1256 \text{ m}^2$


Area of the shaded region = 5344 m^2

(5 marks)

Consider a triangle inside of a rectangle.

The triangle has a base of 6 m and a height of 8 m.

(Diagram not drawn to scale)

20 m

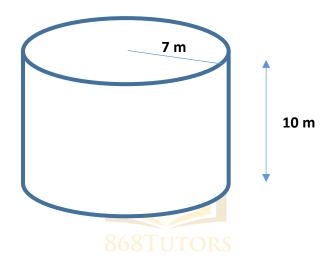
22 m

Calculate the area of the shaded region.

Area of the shaded region = Area of the rectangle - Area of the triangle

Area of the rectangle = $b \times h$ = 22 m \times 20 m = 440 m²

Area of the triangle = $\frac{1}{2}$ (b × h) = $\frac{1}{2}$ (6 × 8) = 24 m²


Area of the shaded region = $440 \text{ m}^2 - 24 \text{ m}^2 = 416 \text{ m}^2$

(5 marks)

Consider the cylindrically shaped tank below. The radius of the circle that forms part of the tank is 7 m. The height of the tank is 10 m.

Use $\pi = 3.14$

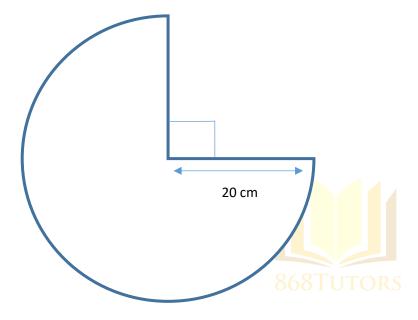
(Diagram not drawn to scale)

(a) Calculate the volume of the tank.

Volume of a cylindrical tank = $\pi r^2 h$

Volume of the tank = $(3.14) \times (7)^2 \times 10 \text{ m}$

Volume of the tank = $(3.14) \times 49 \times 10$ m


Volume of the tank = 1538.6 m^3

(5 marks)

Consider the major circle sector with a sector angle of 270° and a radius of 20 cm.

Use $\pi = 3.14$

(Diagram not drawn to scale)

(a) Calculate the area of the major sector.

Area of a circle = πr^2

Area of the major sector = $\frac{270^{\circ}}{360^{\circ}} \times \pi r^2$

Area of the major sector = $\frac{3}{4} \times \pi r^2 = 0.75 \times (3.14) \times (20)^2$

Area of the major sector = $0.75 \times (3.14) \times 400 = 942 \text{ cm}^2$

(2 marks)

(b) Calculate the perimeter of the major sector.

Perimeter of the major sector = 20 cm + 20 cm + $\frac{3}{4}$ (2 πr)

Perimeter of the major sector = $40 \text{ cm} + \frac{3}{4} (2 \times 3.14 \times 20 \text{ cm}) = \boxed{134.2 \text{ cm}}$

Use $\pi = 3.14$

(a) Calculate the volume of a pyramid with a base of 20 m² and a height of 5 m.

Volume of a pyramid = Area of base × height

Volume of pyramid = $20 \text{ m}^2 \times 5 \text{ m}$

Volume of pyramid = 100 m^3

(2 marks)

(b) Calculate the volume of a sphere that has a radius of 200 m.

Volume of a sphere = $\frac{4}{3}\pi r^3$ radius = 200m

Volume of sphere = $\frac{4}{3} \times 3.14 \times (200)^3 = \frac{4}{3} \times 3.14 \times 8,000,000$

Volume of sphere = 33,493,333.<mark>33 m</mark>³

(3 marks)

(c) Calculate the radius of a sphere that has a volume of 300 m³.

Volume of a sphere = $\frac{4}{3}\pi r^3$, making r the subject of the formula

$$r = \left(\frac{0.75 V}{\pi}\right)^{\frac{1}{3}} \quad r = \left(\frac{0.75 \times 300}{\pi}\right)^{\frac{1}{3}}$$

$$r = \left(\frac{225}{3.14}\right)^{\frac{1}{3}}$$

r = 4.15 m (to 2 decimal places)

(3 marks)

(d) Calculate the surface area of a sphere that has a radius of 20 m.

A (Surface area of a sphere) = $4\pi r^2$ radius = 20m

$$A = 4 \times 3.14 \times (20)^2 = 5,024 \text{ m}^2$$

(e) A cone has a diameter of 30 cm and a vertical height of 64 cm. Calculate the volume of the cone.

V (Volume of a cone) =
$$\frac{\pi h r^2}{3}$$

$$diameter = 30 cm, radius = 15 cm$$

$$V = \frac{3.14 \times 64 \text{cm} \times (15)^2}{3}$$

(2 marks)

(f) A cone has a volume of 320 cm³. The cone has a height of 40 cm. Calculate the radius of the cone.

V (Volume of a cone) =
$$\frac{\pi h r^2}{3}$$

Making r the subject of the formula

$$3\mathbf{v}=\pi h r^2$$

$$r = \left(\frac{3V}{\pi \times h}\right)^{\frac{1}{2}}$$
 $r = \left(\frac{3 \times 320}{3.14 \times 40}\right)^{\frac{1}{2}}$ $r = \left(\frac{960}{125.6}\right)^{\frac{1}{2}}$ radius = 2.76 cm (to 2 decimal places)

Purchase solutions at www.868tutors.com

END OF WORKSHEET

Access more free worksheets at www.868tutors.com