

Instructions and Tips:

- √ You have 60 minutes to complete this worksheet
- This worksheet consists of 5 questions
- ✓ Write answers in the spaces provided
- ✓ All working must be clearly shown

TUTORS

Preparation for

High School Mathematics

Measurement II

Solutions

Student Name:	
Student ID:	
Date: / /	

Highest Score:

Total Score:

Tutor's Comments:

Access more free worksheets at www.868tutors.com

Use $\pi = 3.14$

(a) Consider a rectangular room with a length of 20 m and a width of 10 m. Calculate the area of carpet that needs to be purchased to carpet the room.

$$Area = length \times width$$

Area =
$$20m \times 10m$$

Area =
$$200 \text{ m}^2$$

(2 marks)

(b) Calculate the radius of a sphere that has a volume of 1000m³.

Volume of a sphere
$$=\frac{4}{3}\pi r^3$$
 $V = \frac{4}{3}\pi r^3$

Make r the subject of the formula
$$r = \left(\frac{0.75 V}{\pi}\right)^{\frac{1}{3}}$$

$$r = \left(\frac{0.75 \times 1000}{\pi}\right)^{\frac{1}{3}}$$
 $r = \left(\frac{750}{\pi}\right)^{\frac{1}{3}}$ $r = \left(\frac{750}{3.14}\right)^{\frac{1}{3}}$ radius = 6.20 m (to 2 decimal places)

868TUTORS

(2 marks)

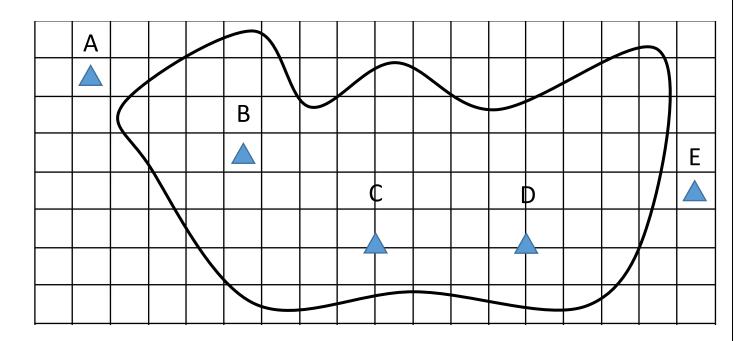
(c) Calculate the surface area of a sphere that has a volume of 1000m³.

A (Surface area of a sphere) =
$$4\pi r^2$$
 recall from (b) that $r = \left(\frac{750}{\pi}\right)^{\frac{1}{3}}$ using $r = 6.203504909$

$$A = 4\pi r^2$$
 $A = 4(3.14) (38.48347316)$ $A = 483.35 \text{ m}^2 \text{ (to 2 decimal places)}$

(2 marks)

(d) Calculate the volume of a pyramid that has a base area of 20m² and a height of 5m.


Volume of a pyramid = Area of base × height

Volume of pyramid =
$$20m^2 \times 5m$$

Volume of pyramid =
$$100 \text{ m}^3$$

Consider the island below. The map is drawn on a grid of 1 cm squares. A, B, C, D and E are five high producing oil facilities.

The scale of the map is 1:2500

(a) Determine, in centimetres, the distance from C to D on the map.

C to D = 4 cm

(1 mark)

(b) Estimate, by counting, the area in square centimetres of the island.

Estimate = 76 cm^2

(c) Use the scale to Calculate the ACTUAL distance between C and D in kilometres on the map.

Scale 1: 2500

1 cm= 2,500 cm

4 cm = 10,000 cm

Actual distance = 10,000 cm

Converting cm to m

 $100 \ cm = 1 \ m$

 $1 \ cm = \frac{1}{100} m$

 $10,000 \ cm = \frac{1}{100} \ m \times 10,000 = 100 \ m$

Converting m to km

1000 m = 1 km

 $1 m = \frac{1}{1000} km$ $100 m = \frac{1}{1000} km \times 100 = 0.1 km$

Actual distance between C and D = 0.1 km

(2 marks)

(d) Calculate, the ACTUAL area in square metres of the island.

Estimate = 76 cm^2

Converting estimate using scale

Scale 1:2500

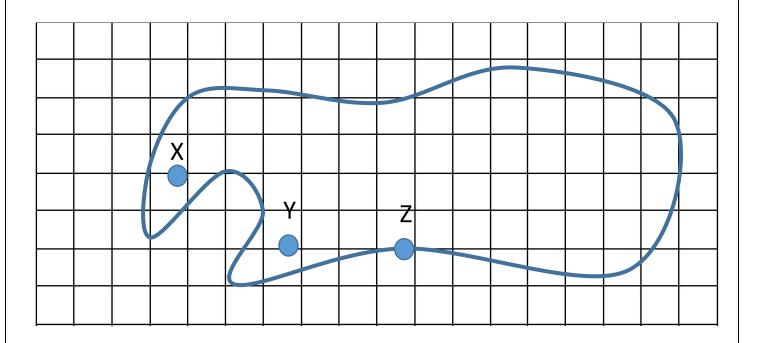
1 cm = 2500 cm $1 cm^2 = (2500 cm)^2$

 $1 cm^2 = 6,250,000 cm^2$

 $76 \text{ cm}^2 = 6,250,000 \text{ cm}^2 \times 76$

 $76 \text{ cm}^2 = 6,250,000 \text{ cm}^2 \times 76 = 475,000,000 \text{ cm}^2$

Converting to m²


100 cm = 1 m 1cm = $\frac{1}{100}$ m 1 cm² = $\left(\frac{1}{100}$ m $\right)^2$ 475,000,000 cm² = $\left(\frac{1}{100}$ m $\right)^2 \times 475,000,000$

Actual area = $47,500 \text{ m}^2$

(3 marks)

Consider the island below. The map is drawn on a grid of 1 cm squares. X, Y and Z are three all-inclusive tourist resorts.

The scale of the map is 1:1500

(a) Determine, in centimetres, the distance from Y to Z on the map.

Y to
$$Z = 3 cm$$

(1 mark)

(b) Estimate, by counting, the area in square centimetres of the island.

Estimate = 54 cm^2

(c) Use the scale to Calculate the ACTUAL distance in kilometres between Y and Z on the map.

$$3 \text{ cm} = 1500 \text{ cm} \times 3$$
 $3 \text{ cm} = 4500 \text{ cm}$

$$3 cm = 4500 cm$$

Converting 4500 cm to m then to km

 $100 \, cm = 1 \, m$

$$1 \ cm = \frac{1}{100} m \qquad 4500 \ cm = \frac{1}{100} m \times 4500 \qquad 4500 \ cm = 45 \ m$$

1000 m = 1 km

$$1 m = \frac{1}{1000} km$$
 $45 m = \frac{1}{1000} km \times 45 = 0.045 km$

Actual distance = 0.045 km

(3 marks)

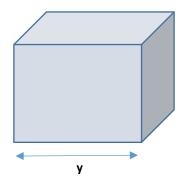
(d) Calculate, the ACTUAL area in square metres of the island.

Estimate from (b) = 54 cm^2

$$1 \text{ cm} = 1500 \text{ cm}$$
 $1 \text{ cm}^2 = (1500 \text{ cm})^2$ $1 \text{ cm}^2 = 2,250,000 \text{ cm}^2$

$$54 \text{ cm}^2 = 2,250,000 \text{ cm}^2 \times 54$$
 $54\text{cm}^2 = 121,500,000 \text{ cm}^2$

Converting 121,500,000 cm² to m²


100 cm = 1m 1 cm =
$$\frac{1}{100}$$
 m 1 cm² = $\left(\frac{1}{100}$ m)²

121,500,000 cm² =
$$\left(\frac{1}{100} m\right)^2 \times 121,500,000 cm^2 = 12,150 m^2$$

Actual area = $12,150 \text{ m}^2$

(4 marks)

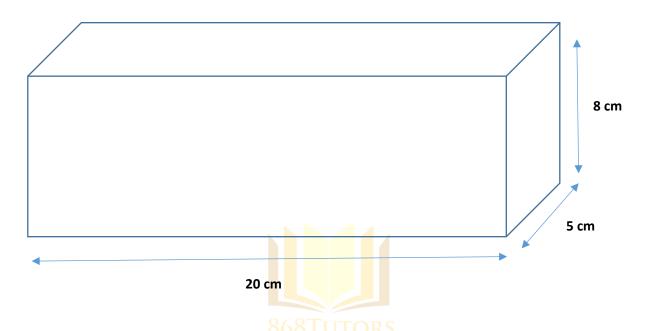
Consider the cube below. The cube has a volume of 100 m³. (Diagram not drawn to scale)

(a) Calculate the length of one side of the cube.

Volume of a cube = $side \times side \times side$

$$V = y^3$$
 100 $m = y^3$ $y = (100)^{\frac{1}{3}}$ length of one side = 4.64 m (to 2 decimal places)

(2 marks)


(b) Calculate the surface area of the cube.

Surface area of the cube = $6 \times side^2 = 6y^2 = 6 \times (4.641588834)^2$

Surface area of the cube = 129.27 m² (to 2 decimal places)

Consider the dimensions of the cuboid shown:

(Diagram not drawn to scale)

(a) Calculate the volume of the cuboid shown.

Volume of a cuboid = $length \times width \times height$

Volume of the cuboid = 20 cm \times 5 *cm* \times 8 *cm*

Volume of the cuboid = 800 cm³

(2 marks)

(b) Calculate the surface area of the cuboid shown.

Surface area of cuboid = $(4 \times length \times height) + (2 \times width \times height)$

Surface area of cuboid = $(4 \times 20 \text{ cm} \times 8 \text{ cm}) + (2 \times 5 \text{ cm} \times 8 \text{ cm})$

Surface area of cuboid = $640 \text{ cm}^2 + 80 \text{ cm}^2$

Surface area of cuboid = 720 cm²

Purchase solutions at www.868tutors.com

END OF WORKSHEET

Access more free worksheets at www.868tutors.com