Instructions and Tips:

- You have 60 minutes to complete this worksheet
- This worksheet consists of 5 questions
- Write answers in the spaces provided
- All working must be clearly shown

Student Name: _______________________________

Student ID: __________________________________

Date: _ _ / _ _ / _ _ _ _

Total Score:

Highest Score:

Tutor's Comments:

Access more free worksheets at www.868tutors.com
Question 1

Twenty-five bags of Cocoa powder are measured on a scale. The mass of each bag is recorded to the nearest kilogram as shown in the table below:

<table>
<thead>
<tr>
<th>Mass (kg)</th>
<th>Tally</th>
<th>Number of bags</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - 10</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>11 - 20</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>21 - 30</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>31 - 40</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>41 - 50</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

(a) Complete the frequency table below for the given data.

(b) State the lower class boundary for the class interval 11 - 20.

(c) State the class width for the class interval 11 – 20.

(d) State the class midpoint for the class interval 11 – 20.

(e) On the graph paper on the next page, draw a histogram to represent the data contained in the frequency table above. Use appropriate scales (kilograms on the x-axis and bags on the y-axis).
Appropriate scale : x-axis, 2 cm = 10 kg
Appropriate scale : y-axis, 1 cm = 1 bag
Question 2

Twenty different peppers from across the Caribbean were classified in terms of their heat units. Their heat to the nearest unit was recorded as shown:

<table>
<thead>
<tr>
<th>Heat Unit</th>
<th>Tally</th>
<th>Number of peppers</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 – 1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001 – 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001 – 3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3001 – 4000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Complete the frequency table below for the given data.

(b) State the lower class boundary for the class interval 1001 - 2000.

1000.5

(c) State the class width for the class interval 1001 - 2000.

2000.5 – 1000.5 = 1000

(d) State the class midpoint for the class interval 1001 – 2000.

\[
\frac{1001 + 2000}{2} = 1500.5
\]

(e) On the graph paper on the next page, draw a histogram to represent the data contained in the frequency table above. Use appropriate scales (heat units on the x-axis and peppers on the y-axis).

(3 marks)

(6 marks)
Appropriate scale: x-axis, 2 cm = 1000 Heat Units
Appropriate scale: y-axis, 1 cm = 1 pepper
Question 3

Twenty bags of coconut milk powder are weighed. The mass of each bag to the nearest kilogram is recorded as shown:

<table>
<thead>
<tr>
<th>Mass (kg)</th>
<th>Tally</th>
<th>Number of bags</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 10</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>11 - 20</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>21 - 30</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>31 - 40</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>41 - 50</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

(a) Complete the frequency table below for the given data.

(b) State the lower class boundary for the class interval 31 - 40.

30.5

(c) State the class width for the class interval 31 – 40.

40.5 – 30.5 = 10

(d) State the class midpoint for the class interval 31 – 40.

\[
\frac{31 + 40}{2} = 35.5
\]

(e) On the graph paper on the next page, draw a histogram to represent the data contained in the frequency table above. Use appropriate scales (kilograms on the x-axis and bags on the y-axis.)

(6 marks)
Question 3
Histogram

Appropriate scale : x-axis, 2 cm = 10 kg
Appropriate scale : y-axis, 1 cm = 1 bag
Question 4

The table below shows the quantity of hot peppers produced by a farm, in tonnes, from 2012 to 2016.

<table>
<thead>
<tr>
<th>Year</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot pepper production (Tonnes)</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

(a) Complete the line graph below to represent the given information.

(2 marks)
(b) Between which two consecutive years was there the greatest increase in hot peppers produced?

2013 and 2014

(the section of the line graph with the largest gradient indicates the greatest increase)

(c) What was the total production of hot peppers in the five year period from 2012 to 2016?

\[8 + 5 + 9 + 10 + 12 = 44 \text{ tonnes} \]

(3 marks)

(d) The mean yearly hot pepper production from 2011 to 2016 was 10 tonnes. How many hot peppers were produced in 2011?

\[\frac{x + 8 + 5 + 9 + 10 + 12}{6} = \frac{10}{1} \]

\[\frac{x + 44}{6} \times \frac{10}{1} \] (Cross-Multiplying)

\[x + 44 = 60 \]
\[x = 60 - 44 \]
\[x = 16 \text{ tonnes} \]

16 tonnes of hot pepper were produced in 2011.

(3 marks)
Question 5

The line graph below shows the daily production of a private oil producer, in hundreds of barrels over a five day period.

Complete the table to show the daily oil production.

<table>
<thead>
<tr>
<th>Day</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil production (Hundreds of barrels)</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

(3 marks)
(a) Between which two consecutive days was there the greatest increase in oil production?

Thursday and Friday

(b) What is the total oil production for the five day period, Monday to Friday?

\[
300 + 400 + 100 + 400 + 900 = 2100 \text{ barrels}
\]

(c) Calculate the mean daily oil production for the five day period from Monday to Friday.

\[
\frac{300 + 400 + 100 + 400 + 900}{5} = 420 \text{ barrels}
\]

\[
\frac{\text{Total Number of Barrels}}{\text{Total Number of Days}} = \text{Mean daily oil production}
\]

(4 marks)